高分子膜如何处理重金属废水

  • 发布日期:2018-04-02

超滤与微滤技术

超滤与微滤技术是高分子膜应用途径之一,在压差推动力的环境下实现重金属离子筛孔分离,其具体流程为以下几方面:第一,制膜。超滤膜材质主要为醋酸纤维素、聚酞亚胺、聚丙烯睛、聚醋酸乙烯、两性离子交换膜等,选择相分离法和溶胶一凝胶法;微滤膜材料的聚醋、聚碳酷、聚四氟乙烯和纤维素等物质,选择相分离法、流延法以及溶剂蒸发法。第二,分离原理。超滤膜属于非对称膜,一层几极薄、有孔径的表平层与一层较厚、海绵状多孔层组成;微滤膜膜孔呈截头圆锥体状,形态网状海绵曲孔型,渗透液可经过孔流出,促进传质,有效防止膜孔堵塞。第三,应用。在实际应用中,由于重金属离子半径较小,工作人员要做好重金属废水预处理,扩大离子半径,使其高于膜孔径,在进行污水过滤的过程中,会将重金属离子留在膜孔径中,进而达到重金属废水处理的目的。

高分子膜如何处理重金属废水

纳滤技术

纳滤技术作为一种高分子膜应用技术,在实际应用的过程中具备以下几种特点:一是可以截留150-2000的分子,介于反渗透膜与超滤膜间;二是可以截留二价离子和多价离子,分离过程无任何化学反应,不会影响生物活性,主要应用在饮用水与废水处理中。利用纳滤技术一般可以纯化大约90以上废水,缩小重金属离子含量,同时分离出的重金属具有很大的回收价值。其主要流程为以下几方面:第一,制膜。纳滤膜制造材质主要包括醋酸纤维素、磺化聚醚矾、聚乙烯醇和聚酞胺等物质,通过Sol-gel法制备氧化铝复合纳滤膜,其孔径为0.5mm,膜通量为15L/(m2·h),在20摄氏度、1MPa环境下,其正电荷可以分离重金属废水中的多价阳离子。第二,分离原理。纳滤膜属于非对称膜,自身具备纳米级孔径,由极薄致密层与细孔表皮层组成,在实际应用中可以筛除重金属废水中的中性粒子,由于带电荷特性可以和电解质离子进行静电反应,强化电荷强度,进而实现对重金属废水中重金属离子的截留。分离后的重金属离子经过鳌合沉淀后,形成重金属沉淀物,进而达到回收目的。

反渗透膜技术

反渗透膜包括对称膜与非对称膜,对称膜为均质、致密的多孔膜,重金属离子可以在反渗透膜中实现渗透率相同,进而均匀分离重金属离子。而非对称膜为极薄、致密的表皮层和多孔支撑层组成,表皮层可以进行分离与传递速率,而多孔支撑层主要起到支撑作用。一般而言,分渗透膜的半径小于1.0mm,水分子可以自由穿梭在反渗透膜中,而重金属离子半径大于反渗透膜半径,进而被截留在反渗透膜孔径中,进而实现重金属废水的处理与分离。在实际应用的过程中,反渗透膜在实际渗透中淡水一侧液面进而下沉,而一侧液面则需要不断上升,以达到平衡状态。若溶液压力失去平衡,溶液水分就会透过半透膜流向另一侧,提高溶液浓度,以此称为反渗透。在反渗透膜在重金属废水处理中应用的过程中,其反渗透装置会开展污水回收铬实验,低压状态下的反渗透膜会将铬分离,其回收量可达到99.8%以上。在利用分渗透膜分离重金属废水中铜离子的过程中,反渗透膜可以截留99%的Cu,同时还可以实现多种离子的回收,进而达到对重金属废水的有效处理。据相关实验结果显示,在处理铬离子和铜离子的过程中,针对其他多种金属离子,反渗透膜可以截留率为98.6%,进而有效分离重金属废水中的重金属离子,使得重金属废水达到国家规定的排放标准,同时还可以通过沉淀的方式实现重金属离子的回收,进而达到重金属废水处理的最终目的。

威特雅环境整合膜处理技术,重金属废水处理时结合传统的生化等工艺作为预处理,能够实现重金属废水的回用、零排放,为客户带来实实在在的环保价值。

详情参考以下专题:

废水处理://www.wteya.com/wastewater/


SSI ļʱ